Частотный преобразователь (электропривод)

Материал из Википедии — свободной энциклопедии
Перейти к навигации Перейти к поиску

Частотный преобразователь — электронное устройство для изменения частоты электрического тока (напряжения)[1][2].

Назначение[править | править код]

Частотный асинхронный преобразователь частоты служит для преобразования сетевого трёхфазного или однофазного переменного тока частотой 50 (60) Гц в трёхфазный или однофазный ток, частотой от 1 Гц до 800 Гц.

Промышленностью выпускаются частотные преобразователи электроиндукционного типа, представляющего собой по конструкции асинхронный двигатель с фазным ротором, работающий в режиме генератора-преобразователя, и преобразователи электронного типа.

Частотные преобразователи электронного типа часто применяют для плавного регулирования скорости асинхронного электродвигателя или синхронного двигателя за счёт создания на выходе преобразователя электрического напряжения заданной частоты. В простейших случаях регулирование частоты и напряжения происходит в соответствии с заданной характеристикой V/f, в наиболее совершенных преобразователях реализовано так называемое векторное управление.

Частотный преобразователь электронного типа — это устройство, состоящее из выпрямителя (моста постоянного тока), преобразующего переменный ток промышленной частоты в постоянный, и инвертора (преобразователя) (иногда с ШИМ), преобразующего постоянный ток в переменный требуемой частоты и амплитуды. Выходные тиристоры (GTO) или транзисторы (IGBT) обеспечивают необходимый ток для питания электродвигателя.

Для улучшения формы выходного напряжения между преобразователем и двигателем иногда ставят дроссель, а для уменьшения электромагнитных помех — EMC-фильтр.

Устройство и принцип действия[править | править код]

ПЧ — преобразователь частоты;
ИТ — преобразователь частоты источник тока;
ИН — преобразователь частоты источник напряжения;
АИМ — преобразователь частоты с амплитудно-импульсной модуляцией;
ШИМ — преобразователь частоты с широтно-импульсной модуляцией
Функциональная схема преобразователя частоты, выполненного по схеме источника напряжения
Функциональная схема преобразователя частоты, выполненного по схеме источника тока

Электронный преобразователь частоты состоит из схем, в состав которых входит тиристор или транзистор, которые работают в режиме электронных ключей. В основе управляющей части находится микропроцессор, который обеспечивает управление силовыми электронными ключами, а также решение большого количества вспомогательных задач (контроль, диагностика, защита).

В зависимости от структуры и принципа работы электрического привода выделяют два класса преобразователей частоты:

  1. С непосредственной связью.
  2. С явно выраженным промежуточным звеном постоянного тока.

Каждый из существующих классов преобразователей имеет свои достоинства и недостатки, которые определяют область рационального применения каждого из них.

В преобразователях с непосредственной связью электрический модуль представляет собой управляемый выпрямитель. Система управления поочерёдно отпирает группы тиристоров и подключает обмотки двигателя к питающей сети.

Таким образом, выходное напряжение преобразователя формируется из «вырезанных» участков синусоид входного напряжения. Частота выходного напряжения у таких преобразователей не может быть равна или выше частоты питающей сети. Она находится в диапазоне от 0 до 50 Гц, и как следствие — малый диапазон управления частотой вращения двигателя (не более 1 : 10). Это ограничение не позволяет применять такие преобразователи в современных частотно регулируемых приводах с широким диапазоном регулирования технологических параметров.

Использование незапираемых тиристоров требует относительно сложных систем управления, которые увеличивают стоимость преобразователя. «Резаная» синусоида на выходе преобразователя с непосредственной связью является источником высших гармоник, которые вызывают дополнительные потери в электрическом двигателе, перегрев электрической машины, снижение момента, очень сильные помехи в питающей сети. Применение компенсирующих устройств приводит к повышению стоимости, массы, габаритов, понижению КПД системы в целом.

Наиболее широкое применение в современных частотно регулируемых модулях находят преобразователи с явно выраженным промежуточным звеном постоянного тока. В преобразователях этого класса используется двойное преобразование электрической энергии: входное синусоидальное напряжение с постоянной амплитудой и частотой выпрямляется в выпрямителе, фильтруется фильтром, сглаживается, а затем вновь преобразуется инвертором в переменное напряжение изменяемой частоты и амплитуды. Двойное преобразование энергии приводит к снижению КПД и к некоторому ухудшению массо-габаритных показателей по отношению к преобразователям с непосредственной связью. Непременное наличие силовых электролитических конденсаторов ставит непреодолимое ограничение на расчётный срок службы преобразователя: при полной нагрузке это обычно порядка 3000 часов.

Для формирования синусоидального переменного напряжения используют автономный инвертор, который формирует электрическое напряжение заданной формы на обмотках электродвигателя (как правило, методом широтно-импульсной модуляции). В качестве электронных ключей в инверторах применяются запираемые тиристоры (GTO) и их усовершенствованные модификации GCT, IGCT, SGCT, и биполярные транзисторы с изолированным затвором IGBT.

Главным достоинством тиристорных преобразователей частоты, как и в схеме с непосредственной связью, является способность работать с большими токами и напряжениями, выдерживая при этом продолжительную нагрузку и импульсные воздействия. Они имеют более высокий КПД (до 88 %) по отношению к преобразователям на IGBT-транзисторах[источник не указан 1881 день].

Преобразователи частоты являются нелинейной нагрузкой, создающей токи высших гармоник в питающей сети, что приводит к ухудшению качества электроэнергии.

См. также[править | править код]

Литература[править | править код]

  • ВРД 39-1.10-052-2001 Методические указания по выбору и применению асинхронного частотно-регулируемого электропривода мощностью до 500 кВт

Примечания[править | править код]

  1. Преобразователь частоты // Большой Энциклопедический словарь. — 2000.. Большой Энциклопедический словарь. 2000.
  2. Преобразователь частоты — статья из Большой советской энциклопедии